
SECURE
DEVELOPMENT:
TOWARDS
APPROVAL
TURVALLINEN TUOTEKEHITYS – KOHTI HYVÄKSYNTÄÄ

Viestintävirasto 003/2018 J

Viestintävirasto
Kyberturvallisuuskeskus
Puhelin: 0295 390 100 (vaihde)
PL 313 (Erik Palménin aukio 1)
00561 Helsinki

Finnish Communications Regulatory Authority
National Cyber Security Centre Finland (NCSC-FI)
Phone: +358 295 390 100 (switchboard)
P.O. Box 313 (Erik Palménin aukio 1)
FI-00561 Helsinki

www.ncsc.fi
www.ficora.fi

http://www.ncsc.fi
http://www.ficora.fi

ESIPUHE 5

FOREWORD 5

YHTEENVETO 6

EXECUTIVE SUMMARY 7

SECURITY MATTERS 9

 Further reading 10

FACILITIES AND PERSONNEL - OPERATIONS SECURITY 11

 Further reading 12

REQUIREMENTS AND THREAT MODELING 13

 Security requirements 13
 Threat modeling 14
 Built-in vs. add-on security 15
 Privacy 17
 Further reading 17

DESIGN 18

 Secure design principles 18
 Minimize attack surface 18
 Establish secure defaults 18
 Sanitize input 19
 Separate duties 20
 Give minimum privileges 20
 Defend in depth 21
 Fail securely 21
 Don’t trust external services 21
 Avoid security by obscurity or secrecy 22
 Keep it simple 22
 Prepare to fix security issues correctly 22

TABLE OF CONTENTS

 Platform choice 23
 Software components 24
 Supply chains 25
 Further reading 25

SECURE PROGRAMMING 26

 Cryptography 26
 Manage dependencies 27
 Conduct code reviews 27
 Continuous integration 28
 Further reading 28

TESTING AND VERIFICATION 29

 Fuzzing 30
 Penetration testing 31
 Stress or torture testing 31
 Reverse engineering 32
 Testing summary 33
 Further reading 33

DEPLOYMENT 34

MAINTENANCE AND PATCHING 35

CONCLUSIONS 37

 Further reading 37

5

ESIPUHE

FOREWORD

Kyberturvallisuudella on merkittävä rooli
sekä yhteiskunnalle kriittisten järjestelmien ja
toimintojen turvaamisessa että kansalaisten
arjessa. Tehokas tapa parantaa kyberturval-
lisuutta on puuttua mahdollisiin ongelmiin
jo ohjelmistotuotteiden ja -palveluiden kehi-
tysvaiheen aikana. Turvallinen tuotekehitys
edistää toimintavarmuutta ja ennaltaehkäisee
tietomurtoja ja -vuotoja.

Viestintäviraston Kyberturvallisuuskeskuksen
kansainvälisiin tietoturvavelvoitteisiin kuuluu
salaustuotteiden hyväksyntä kansainvä-
lisen turvallisuusluokitellun tiedon suojaa-
miseksi Suomessa. Velvoitteen täyttämi-
seksi Kyberturvallisuuskeskuksen National
Communications Security Authority (NCSA-FI

Cyber security has a significant role in protecting
society, its critical systems and its citizens. An
effective way to improve cyber security is to
address these potential problems early during
the development stage of producing soft-
ware-based products and services. Secure
development improves robustness, ensures
continuity, and helps prevent data breaches or
leakages.

Duties of the FICORA’s National Cyber Security
Centre (NCSC-FI) include approving cryp-
tographic products for protecting interna-
tional classified information in Finland. In
order to fulfil this obligation, the National
Communications Security Authority (NCSA-FI),
operating as part of the NCSC-FI, has carried
out assessments of cryptographic products

-toiminto) on arvioinut salaustuotteiden teknisiä
toteutuksia ja niiden valmistajien tuotekehitys-
käytäntöjä. Arvioitujen tuotteiden tietoturva on
parantunut, ja työ on osoittautunut tehokkaaksi
osaksi ennaltaehkäisevää kansallista kybertur-
vallisuustyötä ja suomalaisten salaustuotteiden
myynnin edistämistä.

Kevään 2018 aikana NCSA-FI toteutti selvi-
tystyön turvallisen tuotekehityksen ja hyväk-
syntään valmistautumisen tukemisesta.
Selvitystyössä valmisteltiin “Turvallinen tuote-
kehitys - kohti hyväksyntää” -opas ja suunni-
telma ennaltaehkäisevästä tuoteturvallisuus-
työstä viestimiseksi. Oppaan valmistelussa
hyödynnettiin sekä NCSA-FI -toiminnon koke-
musta että teollisuuden asiantuntijoita.

and their development processes. This has
helped to improve the security of these prod-
ucts. Furthermore, this work has proven to
be an effective and proactive contribution to
national cyber security, while also promoting
sales and exports of Finnish security products.

In the spring of 2018, NCSA-FI began exploring
how better to support vendors in secure devel-
opment and methods for preparing their prod-
ucts for assessment and accreditation. As part
of this work, this guidebook called Secure
Development: Towards Approval and plans for
what information to include with this guidance
were developed. Both industry experts and
NCSA-FI’s own experts participated in devel-
oping the guide.

6

Tämän oppaan tarkoitus on auttaa valmistajia
tekemään laadukkaita ja turvallisia tuotteita.
Opas on suunnattu Kyberturvallisuuskeskuksen
NCSA-FI salaustuotehyväksyntää hakeville
ja muille tietoturvasta kilpailuetua tavoit-
televille suomalaisille valmistajille. Opas
tehostaa hyväksyntään valmistautumista,
antaa neuvoja turvallisesta tuotekehityksestä
ja tukee tietoturvatuotteiden kehitystä viran-
omaiskäyttöön ja vientiin.

Tietoturva on tietoturvaominaisuuksia, esimer-
kiksi salaustoimintoja, mutta myös ohjelmiston
laatutekijä. On siis tärkeää kiinnittää huomio
myös salausta laajemmin tuotteen eri toimin-
toihin, ja ymmärtää että myös ne kuuluvat
hyväksynnän piiriin. Ominaisuuksien lisäksi
tietoturvallinen tuotekehitys kattaa myös kehi-
tyksen ja ylläpidon aikaiset toimet, kuten tila-
turvallisuuden, käytettyjen järjestelmien turval-
lisuuden sekä tuotekehityshenkilöstön koulu-
tuksen. Itsearvionti Katakri-auditointityökalun
ohjeistuksen avulla antaa hyvän pohjan kehitys-
ympäristön ja -organisaation valmistelemiseksi
hyväksyntään.

Uhkamallinnus on tuotteen suunnittelu- ja päivi-
tysvaiheiden tärkeimpiä työkaluja. Uhkamallissa
kuvataan tuotteen käyttötapaukset, ympäristö
uhkien näkökulmasta, järjestelmän tuottamat
arvokkaat tiedot ja palvelut, ja kuinka tuote
vastaa näihin kohdistuviin uhkiin. Tärkeintä on,
että uhkamalliin liittyvät asiat käydään läpi osana
tuotekehitystä, eikä se millä metodilla uhka-arvio
tehdään. Uhkamalli tukee myös tarkastustoimien
tehokasta rajaamista ja kohdistamista.

YHTEENVETO
Tuotteen arkkitehtuurissa ja suunnittelussa
turvallisuutta lisäävät hyväksi todetut suun-
nitteluperiaatteet: hyökkäyspinta-alan mini-
mointi, turvalliset oletusarvot, ulkopuolisten
syötteiden tarkistus, oikeuksien minimointi,
syvyyssuuntainen puolustus, turvalliset virhe-
tilat, epäluottamus ulkopuolisiin palveluihin
ja turvamekanismien yksityiskohtien salai-
luun pohjautuvien oletusten välttäminen.

Dokumentoidut ja omaksutut suunnitteluperi-
aatteet helpottavat sekä turvallista toteutusta
että toteutuksen turvallisuuden arviointia.

Tuotteen toteutusvaiheessa on tärkeää
varmistaa turvallista tuotekehitystä tukevat
työkaluvalinnat, toteuttajien tietoturvaosaa-
minen sekä valittujen kolmansien osapuolten
komponenttien ja alustaratkaisujen turval-
lisuus. Monet tietoturvaongelmat syntyvät
ohjelmointivaiheessa. Turvalliset tekniikat sekä
niiden puutteet riippuvat käytetyistä alus-
toista, komponenteista, ohjelmointikielistä
ja työkaluista. Kaikkiin näihin tulee perehtyä.
Materiaaleja tietoturvalliseen ohjelmoin-
tiin, riippuvuuksien turvallisuuden arviointiin
ja alustojen koventamiseen on yleensä hyvin
saatavilla. Kolmansien osapuolten kompo-
nenteista löytyy ja julkaistaan haavoittu-
vuuksia säännöllisesti, joten tietoturvan tason
säilyttäminen vaatii tuotteen päivittämistä.
Päivitykset puolestaan voivat vaatia uudel-
leenhyväksyntää, jolloin kehitys- ja päivi-
tysprosessin kypsyyden merkitys korostuu
arviointitoiminnassa.

Tämä opas on yhteenveto turvallisen
tuotekehityksen vaiheissa huomioitavista asioista.

7

EXECUTIVE SUMMARY
The purpose of this guide is to help vendors to
create high-quality, secure products. It is aimed
at organisations applying for approval of cryp-
tographic products from NCSA-FI and at other
Finnish vendors seeking to gain a competi-
tive advantage from information security. This
guide helps readers to better prepare for the
assessment, provides insight for anyone inter-
ested in secure development, and supports
the development of products for govemental
use and export.

Security is made up of features such as
encryption, but security is also a quality attri-
bute of the system. Therefore, you should
pay attention to all features, not just to the

cryptographic functions. A security assess-
ment will look at your product as a whole.
Beyond features, secure product development
encompasses the development process itself,
including the maintenance phase. The devel-
opment facilities and tools must be secured,
and the staff must be trained. Doing self-as-
sessment using the Katakri auditing tool gives
a good foundation for preparing both the
development environment and the organisa-
tion for passing the approval process.

Threat modelling is one of the most important
tools for designing and maintaining your
product. The threat model describes the use
cases of the product, the threat environment,

This guide provides a summary of the
phases of secure product development.

Ohjelmiston laadunvarmistukseen, siis myös
tietoturvaan, kuuluu kattava testaus. Testausta
pitää suorittaa todellista käyttötilannetta
vastaavassa ympäristössä ennen kuin tuote
tulee hyväksyntään. Testauksessa ja laadunvar-
mennuksessa tulee pyrkiä kohti toistettavia ja
automaattisia menetelmiä, koska niillä saavu-
tetaan suurempi testikat tavuus, ja järjestel-
mään tehtäviä muutoksia pysytään näin testaa-
maan tehokkaasti ja luotettavasti. Tuotteen ja
sen osakokonaisuuksien helppo testattavuus
nopeuttaa myös sen hyväksyntää. Myös katsel-
moinnit ovat tärkeä osa laadunvarmennusta,
ja tuote pitäisi katselmoida myös tietoturva-
perspektiivistä. Toteutetut testaukset, itsear-
vionnit ja mahdolliset kolmansien osapuolen
suorittamat tarkastukset tukevat hyväksyntään
valmistautumista.

Tämä opas on yhteenveto turvallisen tuote-
kehityksen vaiheissa huomioitavista asioista.
Tämän lisäksi on välttämätöntä perehtyä oman
erikoisalan ja valittujen työkalujen ja alustojen
tietoturvan erityispiirteisiin. Jos voidaan todeta
valmistajan tuotekehitystyökalujen ja -menetel-
mien, testauksen, tilojen ja kehittäjien osaamis-
tason olevan kunnossa, asiakkaiden luottamus
tuotteeseen parantuu ja hyväksyntä nopeutuu.

8

the valuable information protected by the
system, and the services offered by the
system. Threat models help you to assess
how the product counters threats. There is no
single correct way to do threat modelling; the
important thing is to do it and to leverage the
results to support better secure product devel-
opment. The threat model also supports the
effective specification and targeting of assess-
ment activities.

Product security is enhanced by using estab-
lished architecture and design principles:
minimal attack surface, safe defaults, input
sanitation, minimal privileges, defence in
depth, failing safely, not trusting external
services, and avoiding security by obscurity.
Adopting and documenting design principles
facilitates both secure implementation and
security assessment.

When implementing a product, the tools you
use should support secure development,
developers should be security-aware, and
third-party components and platforms should
be secure. Many security issues arise during
the programming phase. Secure programming
techniques and security pitfalls are specific
to the platforms, components, program-
ming languages, and tools used. You must be
familiar with all of these. Material for secure
programming, dependency security assess-
ment, and platform hardening are generally
well known and easily available. Vulnerabilities
in third-party components are found and
announced regularly, so maintaining the secu-
rity of the product requires constant updates.
Updates may lead to re-approval, which places
even more emphasis on maturity in the devel-
opment and maintenance processes as an
enabler for an efficient approval process.

Comprehensive testing is part of software
quality assurance, including security assur-
ance. Testing needs to be carried out before
the product is submitted for approval, in an
environment that matches the real-world situ-
ation. Testing and quality assurance should aim
for reproducible, automated methods, as they
provide greater test coverage and enable effi-
cient and reliable testing of the changes to the
system. Products and components that have
good testability will speed up approval. Code
reviews are an important part of quality assur-
ance, and the product should also be reviewed
from the security perspective. Carrying out
various tests and self-assessments, and
receiving third-party assessments improve the
approval process.

This guide provides a summary of the phases
of secure product development. On top of
that, you need to familiarize yourself with
the specifics of your domain and the tools
and platforms you are using. After all, when
a vendor’s development tools and methods,
testing, facilities and developer skills are in
good shape, customers’ confidence in the
product will improve – and, again, the approval
process will be faster.

9

This guide is intended to help you to create high-quality, secure systems. It gives you an outline
of how to design, implement and test secure systems. It is not only developers that need to
understand secure development; support from R&D managers, product managers, or other
people involved with product development is also essential. In addition to secure develop-
ment guidance, we will also give you practical tips if you are applying, or planning to apply, for
approval of cryptographic products from NCSA-FI.

Secure development reduces your risks,
is good for continuity of your business,
and improves the quality of your work in
general. Security as a business practice
has an overall positive impact.

Often, especially in the past, the secu-
rity of many software-based products has
been low. We have often witnessed a situ-
ation where a vendor wakes up to secu-
rity considerations late in the game, for
example in the bidding phase. Considering
security attributes of products late in the
development cycle is painful for everyone:
vendors, auditors and buyers. It appears
that security is not always communicated
as a requirement from the management,
and therefore is not always as proactively
considered as one might think.

SECURITY MATTERS

SECURITY IS A COMPETITIVE ADVANTAGE FOR YOUR COMPANY:

Heightened awareness about cyber secu-
rity and privacy issues has led customers
to demand security and high quality from
these products and services, even when
they do not have the means to verify it.

If you have been proactive, you are well
positioned for security-related tender
requirements. You will be ready when the
sales manager says that proof of secure
development practices is required for the
“customer meeting next week”.

If you have done your part in securing the
system, your customers are less likely to
be compromised. Your customers are less
likely to hold you responsible if you have
demonstrated due diligence.

Responding to a security incident is
daunting and expensive.

This guide is intended to help you to create high-
quality, secure systems

1010

If management is expecting you to pass the audit, in exchange they should be ready
to invest in security, quality and continuity, and to make them part of the company
culture.

 Proactive work will make the audit easier to pass.

The assessment itself may discover flaws to fix and new ways to improve your
product.

Preparing for security audits has a positive impact on your product:

Further reading

“Computer security is broken from top to bottom”, The Economist, 8 April 2017

“Why Cybersecurity Should Be a No. 1 Business Priority For 2017”, Forbes.com, 20 March 2017

HINT:

https://www.economist.com/science-and-technology/2017/04/08/computer-security-is-broken-from-top-to-bottom
https://www.forbes.com/sites/eycybersecurity/2017/03/20/why-cybersecurity-should-be-a-no-1-business-priority-for-2017/#77f0f1bb1719
https://www.forbes.com/sites/eycybersecurity/2017/03/20/why-cybersecurity-should-be-a-no-1-business-priority-for-2017/#77f0f1bb1719

11

FACILITIES AND PERSONNEL –
OPERATIONAL SECURITY

The tools used for development should match
the security requirements of the products being
developed, e.g. version control that carefully
tracks all edits and who did them is a must-have.
Servers should be up to date with the latest
security patches, and all users should have
unique accounts for logging purposes. Some
popular cloud services aimed at software devel-
opers may be doing a better job in keeping their
platform secure and updated than organisa-
tions that have too few resources to secure their
in-house development platform.

Further, laptops holding development mate-
rial should be up to date with the latest security
patches and have disk encryption.

Secure products are made in secure envi-
ronments. It is the people who design and
implement the software, and people need
tools to work with and places to work in. If
the facilities holding source code, build arti-
facts, tools or work computers are compro-
mised, the attacker can compromise the
products manufactured there. For example,
a backdoor could be added to source code.
We should think of all parts of the system –
including personnel and facilities – when we
think about security.

Popular secure software development life-cycle
models require developer training. This should be
extended to all personnel involved. People should
know general principles of information security
hygiene, e.g. don’t click everything you receive
by email, be careful when browsing and perhaps
do not use work computers for leisure browsing
at all, do not pick up and plug in USB sticks that
you find lying around, keep your systems up to
date, and understand the basics of social engi-
neering. Developers should get additional training
for secure design, threat modelling and secure
programming.

People come and go, so training must be
a recurring part of the onboarding process
for new hires. Relying on one or two “hero”
programmers is not a secure strategy for the
product or for the company.

People should know general principles of information
security hygiene.

1212

You could use the Katakri framework (information security audit tool for authorities)
for self-assessing your product development facilities, processes, and organisational
structure. It can be used by anyone as a checklist for securing an organisation and its
facilities. Any external assessment is likely to follow similar paths, and if you are in line
with Katakri, you are well positioned for such assessment.

OWASP also states the following: “Ad hoc development is too unstructured to produce
secure applications. Therefore, organizations who wish to produce secure code consistently need
to utilize a methodology that supports that goal. Choose carefully – small teams should never
consider heavyweight methodologies that identify many different roles, while large teams must
choose methodologies that will scale to their needs.”

Besides the facilities and personnel, you must
think about the processes used in your organisa-
tion. Do they support the development of high-
quality, secure products? A quote from OWASP
(https://www.owasp.org/index.php/Policy_
Frameworks): “...for a secure application, the
following at a minimum are required:

HINT:

Organizational management which cham-
pions security

A development methodology with adequate
security checkpoints and activities

A written information security policy prop-
erly derived from national standards

Secure release and configuration manage-
ment processes”

Further reading

”Katakri 2015 - Tietoturvallisuuden auditointityökalu viranomaisille (available in Finnish
and in English)”

https://www.owasp.org/index.php/Policy_Frameworks
https://www.owasp.org/index.php/Policy_Frameworks
https://www.defmin.fi/files/3417/Katakri_2015_Information_security_audit_tool_for_authorities_Finland.pdf
https://www.defmin.fi/files/3417/Katakri_2015_Information_security_audit_tool_for_authorities_Finland.pdf

1313

Write down your security requirements, even the implicit ones.
Written security requirements will make your product more
secure and security assessments more effective.

REQUIREMENTS
AND THREAT MODELLING
Software requirements define the expected functionality of the software. They come in the
form of use cases or lists of requirements. On small projects, the requirements may be quite
informal and perhaps not even written down.

Coming up with the right set of requirements is hard, but it is essential for the project’s
success. Doing it entirely at the beginning of a project, before design and implementation,
is usually impossible, as both developer organisation and customers learn more as they go.
Nowadays the trend is towards iterative work done in cycles of gathering requirements
→ design → implementation → verification. Security requirements may be even harder to
define than purely functional requirements. “The software should not crash” is a desirable goal
for secure software, but usually too generic as a verifiable requirement. We will take a more
detailed look at defining security requirements with the help of threat modelling.

SECURITY REQUIREMENTS

Sometimes requirements are inadequate or
missing, and this leads to wasted time in design
and implementation, and shortcomings in the
resulting software. The same goes for security
requirements. They define how the informa-
tion and services of the system are protected
from malicious actors and other misfortunes.
For example, security requirements may deter-
mine how users are authenticated or what data
in the system needs to be encrypted.

As with any other requirements, the secu-
rity requirements can be functional as well
as non-functional. For example, a functional
requirement could state that users must first

log in with a username and password. A non-
functional security requirement could be that
the application must validate all input received
over a network and drop all invalid requests.

To come up with robust security requirements,
we must envision how the product is really
going to be used and in what sort of envi-
ronments. Is the system going to be physi-
cally isolated in a bunker with guards? Will it
be hosted in a cloud service? Does it have
components running in a Web browser?
What assets of value (usually data) will the
system handle?

HINT:

14

1.
Injection: The application
accepts external input, but
does not validate it properly.
This allows an attacker to
execute commands or
do other misdeeds in the
vulnerable application.

2.
Broken authentication:

3.
Sensitive data exposure:

4.
XML external entities (XXE):
The application has insecure XML
processing, such as misimple-
mented SAML for single sign-on.

7.
Cross-site scripting (XSS):

10.
Insufficient logging & moni-
toring: The application does
not hold sufficient secure logs
for investigation or the appli-
cation does not monitor or
provide alerts for attacks.

8.
Insecure deserialisation:

5.
Broken access control:

6.
Security misconfiguration:
A system is missing security
hardening or has unnecessary
services running, or the plat-
form is old and vulnerable or
has insecure built-in accounts.

9.
Using components with
known vulnerabilities:

Once we have laid out the intended usage of
the product, we can then consider what could
go wrong. Can the product be misused? If so,
by who, how and when? Can an attacker get
something they should not have or make you
lose something valuable? Could someone who
is not authorised access the servers to steal
data or even physical disks? What if the browser
component is reverse-engineered and replaced
with a malicious client? What would be the
impact on the system being compromised?

The ways to compromise a system are
numerous, and attacks are varied. However,
there are general categories and characteris-
tics for most known attacks. For example, the
OWASP Top 10 web application security risks
lists the following vulnerability categories,
which are mostly relevant outside the web
application area as well.

The application usescom-
ponents, intentionally or by
mistake, that are known to
be vulnerable.

User authentication is not imple-
mented correctly. Passwords
are not verified, passwords are
leaked, or password recovery
may be used to attack the
system. Session handling after
authentication may also be
broken in a way that allows an
attacker to hijack sessions.

Sensitive data is stored or
transported in clear text or
using only weak protection.

Attackers can tamper with
data/objects that the appli-
cation deserialises and then
uses for privileged actions.

The application allows users
to perform actions outside
their intended permissions.

Attackers can execute
unwanted HTML or JavaScript.

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

15

“Misusers” come in different types – from script
kiddies to profit-seeking criminals to nation-state
actors – and each of them has different capabil-
ities. Which one you must consider depends on
the usage of the planned system. You should

THREAT MODELLING

Threat modelling is the term used for evalu-
ating the security of a system. When discussing
the security requirements we already outlined
some general principles of threat modelling.
There are several methodologies for threat
modelling, but it does not require special skills
or learning some complex methodology.

“There are multiple approaches to threat
modeling... The method used to assess risk is
not nearly as important as actually performing a
structured threat risk modeling. Microsoft notes
that the single most important factor in their
security improvement program was the corpo-
rate adoption of threat risk modeling.” - Threat
Risk Modeling - OWASP

If you have trouble getting it done,
consider using external consultants
to facilitate it.

also think about what motivation a person could
have to compromise the system and the valu-
able assets the system holds, as well as what the
impact of a successful attack would be for your
customers and for you.

It is not so much about how you do it, as
long as you do it. Think like the attacker, and
build security requirements into your action
plan. You need a high-level architecture in
your system for threat modelling, as different
components have different roles and
different security characteristics, and they
hold information with varying levels of secu-
rity. As architecture design is usually consid-
ered as part of the design, you need to iterate
between design and threat modelling, which
again calls for an iterative development
process.

https://www.owasp.org/index.php?title=Threat_Risk_Modeling&oldid=231638
https://www.owasp.org/index.php?title=Threat_Risk_Modeling&oldid=231638

16

If your product is going to be audited for security, then threat modelling is going to be
part of the audit. Auditors may focus on a specific subset of features in your product,
and they will most likely have a specific usage scenario and environment in mind. For
example, you may have 20 features in your product, but only five of them may be
audited. The remaining 15 features may need to be disabled in the audited usage,
unless they have no overall security impact.

Auditors’ threat model may not match yours. They need to focus on the threats that
are relevant for their assignment. As the supplier of technology, you should understand
what your customer requires and work with them to build the relevant threat model.
What kind of data at which security level are they going to handle with your system?
What happens to you customer if security is breached? Who are the crooks or enemies
your customer will need to worry about? Who are the future users of the system?

The auditors are most likely going to use the system from their angle, emphasising the
use cases and scenarios relevant to their assignment. They will observe how the system
behaves and tie back to the threat model that they are building. Does the threat model
cover the actual usage scenarios and features of the product?

This is good for you, if you already have a system that you are not totally confident with
security-wise. By understanding the priorities of the customer who is going to assess
your product, you get a to-do list for priorities for your security update. The things that
are not immediately important for the customer can be pushed to future projects.

Often the term built-in security is used to refer
to the principle that security requirements are
taken into account from the beginning of a
development project, resulting in a product
that has security embedded into it. The other
principle is add-on security, where secu-
rity is considered only after the product is
implemented, and the security is provided
by adding new components and features for
protection.

Built-in security is considered better for
several reasons. Adding new compo-
nents always brings integration problems,
additional costs, and increased likelihood
of vulnerabilities. With built-in security, this
is avoided, as security is an integral part
of the components. Furthermore, secu-
rity is a quality attribute alongside maintain-
ability, testability, throughput and usability.
It is difficult to instil quality by adding new
components.

BUILT-IN SECURITY VS. ADD-ON SECURITY

HINT:

1717

Considering security from the early stages and
training your development staff helps to bring
a security mindset into teams and becomes
a great asset in later phases of the project.
Conducting security assessments, secure
deployment and security patches are the foun-
dations of a secure product.

If your product’s own security falls short or if intended
use cases are especially challenging, the assessment may
require you to add further protective measures. These may
include measures like physical barriers or firewalls.

HINT:

PRIVACY

Related to security is privacy and protection of personal data. Privacy requires security, but
issues like how long you can store personal data for or if you need to inform your customers
about the data you are storing about them are excluded from this guide. We just want to
remind that you may not have the luxury to ignore these issues.

Further reading

Synopsys, June 2016: Are You Making Software Security a Requirement?

 OWASP: Threat Risk Modeling

Add-on security, such as firewalls, application
sandboxing and intrusion detection systems,
can give you further assurance. However, if
your product has not been built with a strong
and secure development focus, they are only
stopgap measures. In that case, we recom-
mend you begin “building security in” as soon
as possible to upcoming releases.

https://www.synopsys.com/blogs/software-security/software-security-requirement/
https://www.owasp.org/index.php/Threat_Risk_Modeling

1818

DESIGN
Once you have laid out the requirements, it is time to design the system. Hopefully, you are
using an iterative approach and you revisit the requirements and design phases several times.
This makes the job easier, as nothing will be perfect on the first run.

Design determines the architecture of your system needed to deliver the intended function-
ality, as stated in the requirements. However, the architecture also has a massive impact on
the ease (or difficulty) of making the system secure. As you perform threat modelling with your
architecture plan, you will most likely spot architectural changes that will make your product
easier to secure.

SECURE DESIGN PRINCIPLES

Minimise the attack surface
The term “attack surface” is used to refer to the
portion of the system that is exposed to the
outside world, physically or through a network or
files. All attacks are expected to come through this
surface, unless you have missed something.

You should consider ways to minimise the
attack surface by eliminating non-essen-
tial interfaces. For example, does the device
need a USB port, or can it be covered to make
access more difficult? Can some default services
of the platform OS be disabled to harden the
platform? We will return to the topic of plat-
form hardening later. Can administrator access
only be allowed from a local host? Perhaps the
system Web service can be made with static
pages only without dynamic processing on the
web server itself?

Reducing the attack surface has many bene-
fits. There will be fewer threat scenarios to
consider and less room for implementation
mistakes, and testing the system is easier.

Establish secure defaults
Your customers should not have to be experts
to use your system securely. Sadly, systems are
usually insecure by default, and securing them
is left for the administrator of the system. As an
administrator is not as familiar with the system
as the developer, the system should ship with
secure defaults and minimal configuration. Any
weakening should be a conscious decision made
by the user of the system. Think about your
liability. Would you like to take responsibility
for shipping an insecure system by default, or
would you rather let the administrator make
the decision to weaken the security after a risk
assessment?

There are general “rules of thumb” for secure design. The ones below are adapted from OWASP
Security by Design Principles.

https://www.owasp.org/index.php/Security_by_Design_Principles
https://www.owasp.org/index.php/Security_by_Design_Principles

19

Sanitise input1
Failure to validate input may allow an
attacker to corrupt or crash the vulner-
able parts of the system. Moreover, it is
often possible to execute commands in the
system or otherwise gain control of it.
Whenever possible, validate input coming
to your system from outside. Validation
means that the syntax of the input (such
as messages) conforms to expected
rules and the input is semantically valid.

Encryption and integrity checks are often
used to protect the data in transit, but unless
you absolutely control the origin of the input
data, even encrypted input needs to be
rigorously validated.

1 Not in the OWASP list

1.
A web server receives a
username and password
(credentials).

4.
The username is recorded
in the audit log.

5.
The administrator studies the
audit log with his/her browser.

2.
It uses an authentication helper
to forward the credentials to an
authentication server.

3.
The authentication server does
a database lookup.

You should also consider indirectly exposed
interfaces. Messages from the attacker could
be carried deep to the core of the system.
Here is an example of input propagation:

2020

Consider all the interfaces. Make sure that at
least someone understands and documents
the data flows in the system. Train your team
to assume that malicious input could reach
their components, no matter where they are.

Fuzzing is a great way to test input sanitation.
We will cover that topic in more detail in the
testing portion.

Separate duties
Separation of duties takes place when one
person submits a travel expenses claim, but
a different person is required to review and
accept it. The same logic applies to soft-
ware components. A classic example would
be moving responsibility for audit logs to
another system that cannot be compromised
along with the system that produces the logs.
You should not store audit logs of database
activity in the same database. If the data-
base is compromised, you will not be able
to trust the audit trails.

Separating duties into different components
also allows you to do more granular tuning of
the resources and privileges available for the
component.

Give minimum privileges
Once you have separated duties between
the components, you should minimise the
access rights of these different processes or
sub-systems. Each component should have
the minimum set of access rights to complete
its intended mission. The same applies to
users: not everybody should have adminis-
trator access, and administrators should not
be all-powerful either. With proper least priv-
ileges assigned, compromises are more likely
to remain contained and the attacker’s access
limited. Or you can think of it the other way
around: if a component can operate with
minimal access rights, then the security of
the component is less critical than in a situa-
tion where the component has admin rights.

In the assessment, you do not want to have to confess
that all your code is running with the highest possible
privileges. You should be able to articulate what
privileges are used and where.

Make sure that at least someone understands and
documents the data flows in the system.

HINT:

21

Defend in depth
Defence in depth means that you design
multiple layers of defence into the system. All
security controls can contain compromising
errors. Also, a determined attacker will find
ways around specific controls. This way, you
make the system more secure, as compro-
mising a single layer does not compromise the
whole system.

For example, you cannot assume that a fire-
wall alone will keep you safe. A firewall
typically has rules to pass traffic. A malicious
program may get through to your protected
perimeter via email. A laptop typically
connected to your network may pick up an
infection on a business trip. Users browse
the web and can be compromised by
malicious websites, giving the attacker a
bridgehead to your network. Defence in depth
means that even with a firewall in place, you
also harden your internal network, encrypt
internal traffic and require authentication to
access internal services. This way, you are not
vulnerable even if the firewall is compromised.

There should be no system account that
allows unlimited system access; instead, there
should be different user roles with the principle
of least privilege. User actions should leave
audit trail that cannot be tampered with. Access
to at least the more powerful roles should
require two-way authentication.

Sometimes the term deep security is used to
mean the same thing.

Fail securely
Be prepared for failure. Hardware breaks down;
network connections fail; batteries run out;
software crashes; and so on. You should design
your system in a way that such a failure does
not compromise system security. Sometimes
this can be tricky. You have two strategies to
choose from: fail open vs. fail closed. Should
the system grant or deny access when it fails?
If component authorising user access cannot
be reached, you may always want to deny
access. But if denying access would lead to
drastic consequences – such as polluting the
water supply of a large population – you would
need to think twice about which strategy you
choose. Our main message is: do not overlook
what happens when a component fails.

Do not trust external services
It is likely that your system uses services from
external systems. The software, facilities and
personnel powering these services are not
under your control. Third-party services can
also be compromised, so don’t give the
attacker a means to move forward.

In the spirit of least privilege and defence in
depth, you should not blindly trust external
services. You should treat them as an external
actor, validate all data from them, and fail
securely if the service is not available.

Be open-minded about what constitutes an
external service out of your control. Just think
about a browser-based system: the user’s
browser is an external service running part of
your code. You cannot rely on security controls
implemented in code running on the user’s
browser. All your security controls must be
enforced on the server. The same applies to
any system where a component is running on a
client system.

22

Avoid security by obscurity or secrecy
Security by obscurity means that security
is dependent on keeping the design or the
implementation of the product secret.
Unfortunately, secrets leak and systems
can be reverse-engineered to reveal their
secrets. Do not rely on security by obscu-
rity. While the data and access tokens your
system handles might be confidential, the
system itself should withstand scrutiny.
Limit the secrets your system needs to fulfil its
mission. Also, consider how those secrets can
be changed when they leak. Is it easy to switch
the private keys of the system? How easily can
the owner of the system ask users to change
passwords if they are compromised?

While keeping design and source code secret
might provide an extra layer of security, you
should never rely on it alone.

Keep it simple
All software and components can contain
errors and vulnerabilities. Even security soft-
ware and security features have vulnerabilities.
Less code means fewer errors. More config-
uration options mean more configuration
mistakes. Aim for your system to be as
simple as possible, and always challenge the
apparent need for extra complexity.

A simple system is easier to review and
secure than a complex one. Further, avoiding
unnecessary complexity affects your bottom
line. A simple system is easier to understand,
so developing and maintaining it will be more
cost-effective.

The less you have to audit, the less the audit will cost.
Either keep your product simple, or be prepared to
prove how only part of it is critical for the use cases to
be approved.

HINT:

Prepare to fix security issues correctly
When you receive information about a
vulnerability in your system, it probably
should be fixed or addressed. This is where
good development and testing processes
come in handy. You should feel confident
about fixing bugs and issuing new releases of
your system. With ad-hoc processes, untrained
personnel and a lack of test automation, every
change is a risk, and you may be tempted to
ignore the problem.

We have often seen situations where a
security bug is fixed only in a specific place
in the system when many similar fixes are
needed elsewhere in the codebase. The
reason for this may be the fear of introducing
side effects, so that only the minimum fix is
made. Fixing one out of many similar problems
is not going to help with security very much.
Another pattern we have observed is that
the vendor fixes the maintenance version of

23

the software, but overlooks the next release,
allowing the problems to reappear with the
next major update.

Sometimes, vendors opt to perform the
minimum modifications to the maintenance
version of the product and ship a larger “fix
round” or refactoring for the next major release.

PLATFORM CHOICE

Your product is running on top of one or more
different platforms. Some common ones are
Linux systems for servers, Android for mobile
devices, different cloud platforms for backend
systems, Docker for sub-systems, Microsoft
Windows and .NET, and so forth. Each platform
has its own security characteristics, and you
need to know the ones for the platform that
you build your product on.

Platforms receive updates at different times
for new features as security problems are
discovered in them. You should consider this
against the intended release cycle and life-
cycle of your product. You should take a look
at the release history of the platform(s) on

your shortlist to get a feel for their security and
update track record. Once you know the plat-
form, you must decide whether you are going
to update your product when the platform
receives updates: all updates, major updates,
just security updates, or none?

Leaving security updates unhandled is
naturally problematic. For open-source plat-
forms, you can also cherry-pick only relevant
updates and thus maintain your own branch
of the platform. In such a case, be aware
that security scanners may produce false
positives and you need to be able to prove
that you have patched the vulnerability.

A security audit will also cover the underlying platforms. The auditor will check that
the security features of the platform have been utilised and check for common pitfalls
that the platform may have. A typical requirement for a security assessment is that all
features of the platform that are non-essential to the functionality are disabled and
removed, if possible. They will also want to know your update policy and that you are
tracking the platform updates to keep your product secure.

Time-critical bugs can also be discovered
when your key developers are on holiday
or sick. This is another reason to implement
proper processes and training so that you can
delegate fixing problems like this to the staff
available at any given time.

 You should feel confident about fixing bugs and
issuing new releases of your system.

HINT:

24

SOFTWARE COMPONENTS

Your product has different components. You
can think of these components with varying
levels of abstraction: software client, backend,
database, VPN terminator, source of random-
ness, software library and so forth. Some
components you implement in-house, some
are subcontracted or purchased, while some
are free and others possibly open source. You
need to know what components your product
is actually using! Sometimes the term bill of
materials is used to refer to the list of compo-
nents an application is made up of.

Some components may appear more securi-
ty-critical than others. Typically, components
related to core business logic or security itself
get special treatment. Alas, even a mundane
image-handling library in high-security
messaging software may be the source of a
fatal vulnerability when rendering a thumbnail
of the person trying to contact you. We urge
you to treat all components as critical and
if something really is a second class citizen
in your product maybe it could be removed
altogether to reduce complexity.

As a further example, installation code might
not appear critical for security. However,
if installer gets compromised, it could be
misused to install a compromised version of
your software.

Once you have the architecture and compo-
nents lined up, you can think about the
security characteristics of each component:

Components use different technologies and
platforms. Do you understand their impacts
on your product’s security?

Different components require different
access rights. How do you apply the
principle of least privilege to them?

Different components have different
expected update frequencies.
How do you synchronise their updates with
your product updates?

Components may have very different
functionality from your core product.
Do you need different testing techniques and
other quality assurance measures for them?

2525

Supply chains
Third party components form your software
supply chain. The suppliers of your compo-
nents are likely to use other suppliers as well,
so the chain may be long. As different compo-
nents are updated, the updates trickle down
the supply chain, and finally you must decide
which updates to apply.

The OpenSSL cryptographic library is a
good example of a popular but challenging
component in the supply chain. It has been
bundled with numerous embedded devices,

applications, services, as well as with other
components, programming languages and
platforms. The authors have frequently seen
products with several different versions of
OpenSSL bundled inside them. OpenSSL is
actively maintained, and security vulner-
abilities have often been found in it, so its
update frequency is quite high. If your
product is using the TLS protocol or X.509
certificates, then the chances are high that
you are directly or indirectly using OpenSSL.

As part of a security audit, the auditor wants to understand your component supply
chain. Be prepared to show your version of a bill of materials, and include hardware
components where applicable. Auditors may use tools to cross-check the list of compo-
nents you provide against the actual ones that are used by the product. Components
that are old, redundant, have dubious reputations, or are otherwise exotic are likely to
result in questions, which you need to be ready and able to answer.

Further reading

OWASP: Security by Design Principles

HINT:

https://www.owasp.org/index.php/Security_by_Design_Principles

26

SECURE PROGRAMMING
Programming turns the design into an application, which hopefully meets the original requirements.
Unfortunately, it is relatively easy to introduce vulnerabilities during the programming phase. On the
positive side, the problem is well recognised, and there are many resources, guides, and courses
for secure programming. You must know the security posture of the platform and external compo-
nents you are using. You should be aware of the impact of the programming language and other
tools that you choose. Writing secure code is possible, but it is as hard as writing error-free code.
Thus, it is helpful to include a security angle in your code reviews.

Your code must be well documented, modular, readable, testable and tested. This is because you must
be able to maintain your code over time and perform fixes to it without compromising its security.

Static analysis tools aim to automatically find flaws – including security problems – by analysing
the source code. Static analysis tools can help you a lot, and there are both free and commercial
solutions available for most programming languages. The bad news is that many of them may
report a lot of false positives, like warnings about code constructs that are not actually problems.
So, you should reserve time and effort for introducing static code analysis into your product
development, especially if the code base is large and has not previously been analysed.

CRYPTOGRAPHY

Virtually all systems and products require some
cryptographic functions, as they must transmit or
store confidential information, authenticate users
and services, and so on.

Cryptography lays one cornerstone of good
security. It is pivotal that you get it right.
Rule number one: don’t reinvent the wheel!
Use well-known, high-quality cryptographic
libraries in your product, and avoid home-
made cryptographic primitives. Always
follow standards and best practices instead of
coming up with your own.

One common pitfall to avoid is using a poor
source of randomness. Many cryptographic
functions require genuinely cryptographi-
cally strong random numbers, and it is hard
to produce them. You should carefully study
reliable ways to get good random numbers
on the platform you plan to use.

It is easy to make mistakes when using cryp-
tographic functions. Many applications have
failed to properly validate certificates before
trusting them (see Common x509 certificate
validation/creation pitfalls for examples). So, use
well-known established techniques and find out
about how to use them properly.

Your code must be well documented, modular,
readable, testable and tested.

https://www.cryptologie.net/article/374/common-x509-certificate-validationcreation-pitfalls
https://www.cryptologie.net/article/374/common-x509-certificate-validationcreation-pitfalls

27

A security audit will put a special focus on the cryptographic functions of your
product. In addition to a thorough design and code review, this code will also be
reviewed and debugged as it runs. The source of cryptographically secure random
numbers is definitely going to be reviewed. Auditors will ask which standards or
well-known implementations your crypto is based on.

The Finnish version of the cryptographic strength requirements is available from:
https://www.viestintavirasto.fi/attachments/tietoturva/Kryptografiset_
vahvuusvaatimukset_-_kansalliset_suojaustasot.pdf. Good generic guidance is avail-
able from: http://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf.
More specific advice for your use cases is available directly from NCSA-FI, please ask.

MANAGE DEPENDENCIES

Modern software development is often more
about assembling components than writing
proprietary software. Programming environ-
ments have developed in a direction where
it is easy for programmers to import third-
party components into products.

There is a huge amount of free, open-
source components available for all major
platforms and programming languages.
Cryptographic functions, parsing data in
various formats, and integration between
systems are usually best handled by
importing components. Even free compo-
nents may have commercial support
available.

You should have a policy, or an agreed
process, for how components are accepted
for use. The decision cannot be left to indi-
vidual developers. Each component may
introduce new vulnerabilities. You also need
to be aware of the licenses of the third-party
components you use.

Sometimes your external dependencies are
just copied and pasted code. Programmers
need to solve complex problems, and often
a solution is available on the Internet as a
code snippet. “It came from the Internet” is
not a guarantee of security and may result in
licensing surprises. If you don’t understand
it, don’t copy it.

CONDUCT CODE REVIEWS

Reviews are excellent for ensuring secure
programming guidelines have been followed.
Taking care of other quality attributes – such
as comments in source code, good naming
practices, and so on – allows you to ship fixes

with less work. They also ensure continuity
by transferring information between team
members.

HINT:

https://www.viestintavirasto.fi/attachments/tietoturva/Kryptografiset_vahvuusvaatimukset_-_kansalliset_suojaustasot.pdf
https://www.viestintavirasto.fi/attachments/tietoturva/Kryptografiset_vahvuusvaatimukset_-_kansalliset_suojaustasot.pdf
http://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf

2828

HINT:
A thorough security audit includes a source code review. Source code that is not
readable, documented, and properly version controlled is itself going to be a red flag.
The auditors are not going to read and understand the whole source code, but based
on their experience, usage scenarios for the product, the threat model, and other
factors, they want to find and review portions of code that they consider critical. If
those portions are hard to find because the code is messy, or even low quality, you
might discover bumps in the road towards acceptance.

Code review is often not enough to tell if the software works correctly, or at all. The
auditor might ask you to facilitate running and debugging the code. For example, many
cryptographic functions can be used incorrectly, or not at all, and the auditor may want
to walk through your code performing the function step by step. Your assistance may be
required in this process, especially if you have exotic hardware or software components.
Your auditor also needs to understand how you build and compile your code in order to
assess the security of the build process itself.

CONTINUOUS INTEGRATION

Continuous integration (CI) means that new
builds of software are made regularly. With
automation, the product is rebuilt after each
commit to the source code repository. You can
also add automated tests to the process to
provide developers with immediate feedback
about potential errors they have made. With
continuous integration and automated tests,
errors are fixed right after they have been

created, and you can be more confident about
each build.

Creating a continuous integration environ-
ment is an investment that you should seri-
ously consider. Even without a fully automated
CI, we urge you to move towards the capability
to create frequent builds of your product and
to have as many automated tests as possible.

Further reading

Secure coding guides
 – OWASP
 – SEI CERT Coding Standards

References for more secure compilation options in some systems
 – C-Based Toolchain Hardening (Microsoft and GCC)
 – Debian Hardening
 – Microsoft - Security Best Practices for C++

https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://wiki.debian.org/Hardening
https://msdn.microsoft.com/en-us/library/k3a3hzw7.aspx?f=255&MSPPError=-2147217396

29

TESTING AND VERIFICATION
Testing checks whether an implemented system meets its requirements. This includes
written explicit requirements, but also the implicit requirements. For example, software
should not crash even when this has not been explicitly expressed in the requirements.

The security features of a system should be tested, as well as other important system
functionalities. You should also pay attention to negative tests – try things that should not
succeed. As we are looking for a high-quality system, testing automation is required, as
manual testing is simply too laborious to achieve good coverage for larger systems with
regular builds. To get started, let’s first recap all the required testing activities.

Unit testing has automated, developer-driven
tests for portions of code in a single compo-
nent. As developers are expected to run the
tests themselves, fixing bugs that are found
should be fast and cheap. Code reviews are a
great place to check that unit tests have been
developed for most code.

Component testing executes a component
in isolation, perhaps with other simulated
components representing the whole system.
Component tests may be designed by a
testing team. Component tests are ideally
automated and executed every day or night.

System testing exercises a build of the full
system. System tests may require manual
testing activities, and thus may be time-
consuming and expensive compared to unit
tests or component tests. It is also possible to
automate system tests, but that may require
significant investment in testing infrastructure.

Acceptance testing is performed by an inde-
pendent testing team, a customer, or by a
third party. Significant problems found during

Code reviews and inspections can be seen
as a form of static testing.

Automated source code analysis is static
testing.

One fairly new approach is software
composition analysis, which takes a
compiled binary and then inspects which
components have been used to assemble
it. This process reveals the external
dependencies a product has, which can
be otherwise hard to enforce when the
number of developers and modules in a
product grow.

You should also pay attention to negative tests –
try things that should not succeed.

acceptance testing may lead to extensive
changes and redoing the acceptance tests,
which may prove to be very expensive and
time-consuming.

Static testing is done without running the
actual product, but by inspecting various
artifacts, such as source code and binaries.

30

Dynamic testing exercises the product and inspects its behaviour

Traditionally, this means performing
manual or automatic tests that verify
conformance with product requirements.

Today, you should also test against
security requirements, and attempts to
attack and abuse the product should be
included in the dynamic tests.

Load testing is a dynamic testing activity
focusing on performance.

Fuzzing is a security-oriented dynamic
testing technique.

A security auditor may do the following to test your product:
1. Read your user manual and/or ask for training on the product
2. Configure your product for their intended use
3. Use the product according to their intended usage scenario
4. Click all available menus and dialogs of the product
5. Attempt to administrate the product according to its intended use
6. Create exceptional and stressful situations for the product (more about them later)

Also, remember that the auditors will cross-correlate what they see here to the threat
model and update it as required. After all, their goal is to understand what the most rele-
vant threats are, whether they match original specifications or not.

FUZZING

Fuzzing, also called fuzz testing, is a securi-
ty-oriented testing method where the product
is subjected to unexpected and erroneous
inputs in order to find bugs.

Fuzzing can be done without access to your
source code. It is likely to reveal problems,
and you want to catch them before others do.
Fuzzing can also be fully automated.

Fuzzing finds vulnerabilities. A typical first sign
of a vulnerability is a crash or a denial-of-ser-
vice condition, but it does not stop there.
With specifically crafted input, an attacker can
potentially take control of the system. This is
called exploitation. There are various free and
commercial products for fuzz testing. (See the
further reading for a list.) You should use them,
as attackers will.

Fuzzing is likely to reveal problems, and you want to
catch them before others do.

HINT:

3131

What happens when a device starts up?
Are there unidentified attack vectors
during boot (such as a key combination
to get to the system menu), or will the
device accept a firmware update from
anyone during boot? (This has happened.)

What happens when a network gets
disconnected? Does the system crash or
enter an unsafe state?

What happens if there is a power outage
and the device reboots once power
is restored?

PENETRATION TESTING

Penetration testing is a security testing
activity performed by dedicated security
experts, who try to break into a service or
system and point out security problems.
Penetration testers are frequently used,
and they can give an impartial opinion
about the security stance of the system.

Fuzzing is often part of a security audit due to its
nature: it is easy to do without knowing the specifics of
the product internals and still effective at discovering
flaws. Many, if not all, common platforms have been
extensively fuzz-tested, so the auditor is not likely to fuzz
test them any more. Fuzzing is most likely applied to your
own home-made interfaces and exotic components.

STRESS OR TORTURE TESTING

An attacker may look to expose your product
to unusual stress or circumstances in order to
find vulnerabilities. It is often not possible to
prevent this, so your system should employ
aforementioned principles of “fail securely”
and “defence in depth”. Some scenarios that
you should consider:

However, as penetration testing is manual
work, it usually cannot be performed for each
product version or build. It also may not be
consistent on in terms of breadth and depth,
and thus can be seen more like an acceptance
testing activity.

HINT:

32

HINT:

Creating stressful situations for your product is going to be part of a security audit.
They are usually easy to simulate (e.g. pull the plug), yet they can reveal quite a lot.

REVERSE ENGINEERING

We said earlier that you should not base the
security of your product on secret details of
your program and algorithms; you should not
build security by obscurity. One good reason is
that there are a lot of tools to reverse engineer
executables, firmware and network traffic.

Wireshark to sniff and analyse network
traffic

Nmap to scan network for hosts, open
ports and services

Strings to output strings from any file
(e.g. executables, firmware)

A security auditor will use reverse engineering to double-
check that your claims about your product are true.
Which components are actually used in the product? Do
the network scan results from your product match the
list of network services required? Is the network traffic
actually what you claim it to be? Are the physical secu-
rity components what you claim that they are?

It is not realistic to assume that the system
engineering details will remain hidden.

Consider reverse engineering your own pro-
ducts, just to get a feel for it. We have found
even these basic tools useful:

HINT:

3333

HINT:
Well-documented testing will speed up the
assessment process. Third-party test results also
help. Remember to reflect your test design and
results against your security requirements.

TESTING SUMMARY

We don’t want to fail acceptance testing.
The best way to avoid rejection is to under-
stand the acceptance tests and then do more
rigorous testing in-house before seeking
acceptance. Perhaps you could use a third
party to do more testing for you before
providing your system for acceptance testing.

A situation where everybody has been:
A system works perfectly on “my computer”
or in your own lab, but fails miserably when

tried elsewhere. You should definitely avoid
the situation where acceptance testing is the
first time your system is used outside your
company. Using third-party testers is one
way to avoid this. They could be motivated
beta-customers, who can provide you with a
real-world usage situation and feedback on
your product.

Further reading

OWASP: Web Application Security Testing Cheat Sheet

 Wikipedia: Penetration Testing

 Wikipedia: Stress testing

 OWASP: Fuzzing (with some tool references)

 MICKAEL DORIGNY Updated 19/10/2016: What is hardening

https://www.owasp.org/index.php/Web_Application_Security_Testing_Cheat_Sheet
https://en.wikipedia.org/wiki/Penetration_test
https://en.wikipedia.org/wiki/Stress_testing
https://www.owasp.org/index.php/Fuzzing
https://www.information-security.fr/quest-ce-que-lhardening/

3434

Once your product is ready and someone
has bought it, you need to deploy it for the
customer. In the past, that involved providing
an installation disk or sending someone to
install the system for the customer. Nowadays,
systems are installed over the Internet, or at
least updated over the network after the initial
installation. Cloud services are not installed at
all, but used with a Web browser.

When you provide a download portal for your
customers, you must ensure that nobody can
infect the installation images in the portal.
Moreover, you should ensure that your customer
does not fall for fake download portals when
they are looking to download your product. This
requires that you properly secure the portal server
and always use encrypted webpages with up-to-
date certificates. If your product itself down-
loads updates or extensions, it should always
check that the origin of the downloads is indeed
your own server. Even with signed updates, you
should beware of downgrade attacks where an
attacker lures your customers to update to an
older, vulnerable version of your product.

Your deployment format may be an appliance
running some OS, for example Linux, or a virtual
image, which is deployed by the customer.
Whatever the platform is, you should make sure
that it is security-hardened appropriately. This
typically means disabling, and perhaps even
removing, all the services that are not essential
to the product. Platforms often come with their
own optional security features, and you need to
consider whether to enable them or not.

Nowadays, your application may also come
in the form of a container image, such as a
Docker image. Containers may include a large
number of different components whose secu-
rity and supply chain you need to understand.
In the case of high-security products including
a hardware component, you should also think
about ways the hardware could be tampered
with.

Possible locations are at the manufacturing
site, in transit from the manufacturer to your
facilities, or in transit from your facilities to
the customer. At the other end of the product
life cycle, you may have to think about what
happens to the hardware when it is decom-
missioned. For example, the disks inside the
product may contain sensitive data, which
must be destroyed. You should instruct your
customers about secure lifecycle manage-
ment of your products.

DEPLOYMENT

You should instruct your customers about secure
lifecycle management of your products.

35

MAINTENANCE AND PATCHING
Once your product has been approved,
purchased, and installed, there will be main-
tenance. Sooner or later, a vulnerability is likely
to be discovered, most likely in some third-
party component you have integrated or in
the platform you are using. You will have to
respond quickly and diligently.

Assuming a specific version of your product
has been approved, an update may invali-
date that approval. However, if you do not
update, your customers remain vulnerable.
This is something you should prepare for and
discuss with the approver. Some angles to this
problem:

Small point changes are easier to accept
than overall changes with uncertainty over
what the final scope of the change is.

Changes in some system components
may be less worrying for the approver
compared to others. For example, updates
in user interface components may be fine
without new approval, whereas the cryp-
tographic module might not be modified
without requiring new approval.

If the approver knows that you have
a solid development, verification and
release process, they may feel less worried
that updates could lead to unwanted side
effects in your products.

You definitely do not want to be in a situation
where a customer asks if a recently discov-
ered vulnerability affects your system, and
you do not know if it does or not. This requires
you to understand the composition of your
product and your software supply chain. It is
even better if you can proactively inform your

customers about vulnerabilities affecting your
product. This requires you to have a process
to follow when vulnerabilities are found in the
relevant components and platforms.

In 2014, the Heartbleed bug (CVE-2014-0160)
was discovered in the OpenSSL cryptographic
library. OpenSSL is very popular and is used
directly and indirectly by a large number of
different applications, devices, components
and platforms. As Heartbleed was a nasty
bug that gained a lot of attention, there was
general pressure to fix the bug wherever
OpenSSL was used. This caused customers to
ask their vendors if OpenSSL was being used
and if they might be vulnerable. Many vendors
did not know which version they were using
and if they were vulnerable. Some vendors did
not know that they were using OpenSSL in the
first place.

It is also possible that someone could find a
vulnerability in your product and wants to tell
you. We assume that if that person is your
customer, you are eager to listen and pay
attention. However, that person may also be
someone else, perhaps a security researcher.
In that case, you should consider having a
channel, for example a specific email address
or a Web form, for making these reports. If
researchers cannot reach you and get feed-
back, they might publish the vulnerability
or sell it to a dubious party. There is a good
Finnish-language website, https://www.tieto-
turvailmoitus.fi/, which provides basic infor-
mation about how to receive security reports.

http://heartbleed.com/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://www.tietoturvailmoitus.fi/
https://www.tietoturvailmoitus.fi/

3636

Bug bounty programs have been an effective
way to improve product security. However, you
need to have done your homework and have a
decent maturity level to start with before you
turn external parties into your only security
testers. At minimum, do not sue people telling
you that you have a problem. Instead thank
them – or even hire them!

CVE - Common Vulnerabilities and
Exposures is a cataloguing system for iden-
tifying vulnerabilities and exposures, so
that we all know that we are talking about
the same thing when we talk e.g. about
CVE-2014-0160.

CWE - Common Weakness Enumeration is
a vocabulary for software security weak-
nesses. It is much less visible than the
previous two.

CVSS – the Common Vulnerability Scoring
System provides a numerical “measure-
ment” of the severity and impact of a
vulnerability or exposure.

You are likely to bump into the following terms
when you enter the world of security updates:

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160

37

CONCLUSIONS
This guide has covered different phases of secure development life cycle. As a self-test, we can
reflect this against the Katakri auditing criteria as applied to a product vendor. Katakri would
require that:

1.
The information assurance
knowledge of software deve-
lopers has been verified.

2.
During the software develop-
ment phase, a risk analysis has
been carried out and the poten-
tial risks have been dealt with
(either controlled or deliberately
accepted).

3.
Interfaces (at least the
external ones) have been
tested with false inputs and
with a large quantity of inputs.

4.
Depending on the development
environment, there is a policy in
use for functions and interfaces
that easily create problems, and
this policy is monitored (e.g.
Microsoft has lists of denied
functions).

7.
The integrity of the prod-
uct’s source code, its version
management and the devel-
opment tools used is ensured.

5.
The architecture and source
code are audited.

6.
The product’s source code is
inspected with automated
static analysis.

Further reading

NCSA Documents (in Finnish)

 Katakri 2015 - Tietoturvallisuuden auditointityökalu viranomaisille - English translation

 VAHTI 1/2013 Sovelluskehityksen tietoturvaohje

 OWASP, which describes itself as follows: “OWASP is an open community dedicated to
enabling organizations to conceive, develop, acquire, operate, and maintain applications that
can be trusted.” They have produced a lot of stuff, so much that it gets confusing. A couple of
picks: – OWASP / Author: Dharmesh M Mehta: Effective Software Security Management
 – Development OWASP Guide 3.0

Microsoft SDLC was one of the first published secure development life cycles.

NIST - Cryptographic Standards and Guidelines

https://www.viestintavirasto.fi/kyberturvallisuus/ncsa-fi.html
https://www.defmin.fi/puolustushallinto/puolustushallinnon_turvallisuustoiminta/katakri_2015_-_tietoturvallisuuden_auditointityokalu_viranomaisille
https://www.defmin.fi/files/3417/Katakri_2015_Information_security_audit_tool_for_authorities_Finland.pdf
https://www.vahtiohje.fi/web/guest/tietoturvallisen-sovelluskehityksen-osa-alueet
https://www.owasp.org/images/2/28/Effective_Software_Security_Management.pdf
https://www.owasp.org/index.php/Guide_Table_of_Contents#About_The_Open_Web_Application_Security_Project
https://www.microsoft.com/en-us/sdl
https://csrc.nist.gov/Projects/Cryptographic-Standards-and-Guidelines

www.ncsc.fi | www.ficora.fi

http://www.ncsc.fi
http://www.ficora.fi

